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A shallow-water equation based one-
dimensional dynamic wave model with non-

hydrostatic pressure
Wei, Z.; Jia, Y.

Coastal wave is one of major forces that dominate coastal hydronydamics, sediment transport, morphology 
and threaten coastal infrastructures. In recent years, the non-hydrostatic technique for solving Reynolds-
averaged Navier-Stokes equations has been developed for wave propagation study. It has been shown that 
this method has a comparable accuracy for wave simulation to Boussinesq-type approaches and a better 
computing efficiency.

In this paper, a one-dimensional depth-integrated non-hydrostatic pressure wave model for wave propagation, 
breaking and run-up is developed based on the numerical method proposed by Stelling and Duinmeijer. In 
this numerical method, the non-conservative form of Navier-Stokes equation is solved for either momentum 
conservation or energy head conservation by applying different advection approximation methods. The 
method is, therefore, able to handle rapidly varied water flows (such as wave breaking) in wide range of 
Froude numbers. When wave run-up is concerned, wetting and drying treatment plays a key role for many 
numerical models. The wet & dry handling approach in the method is simple, efficient and capable of reserving 
positive water depth.

In this non-hydrostatic wave model development, the fractional time step method is adopted. The shallow 
water equations without non-hydrostatic pressure terms are solved for approximation of velocity; a tri-diagonal 
equation for non-hydrostatic pressure terms is then solved, and the approximate velocity is corrected by 
non-hydrostatic pressure terms. The free surface elevation is calculated by the depth-averaged continuity 
equation to satisfy global mass conservation. This model will be validated by an analytical solution and several 
benchmark wave dynamics test cases; it is anticipated the model can predict wave breaking and run-up 
processes effectively.

IntroductIon 
In recent years, numerical simulations of wave mo-
tions using the non-hydrostatic pressure methods 
(Casulli and Stelling, 1998; Stansby and Zhou, 1998) 
have advanced a lot.  Stelling and Zijlema (2003) 
improved the efficiency and accuracy of non-hy-
drostatic method by utilizing an edge-based com-
pact difference scheme for the approximation of 
vertical gradient of the non-hydrostatic pressure lo-
cated at the interface between vertical layers, with 
correct implementation of zero pressure boundary 
at the water surface, their model obtained good 
agreements with the linear dispersion relation with 
only two layers. Subsequent efforts were made 

to improve the model’s efficiency, stability, and 
capability of handling wave breaking and run-up 
(Zijlema and Stelling, 2005, 2008); recently, an op-
erational public domain code: SWASH was released 
(Zijlema et al., 2011). Following them, several non-
hydrostatic models, for example, depth-averaged 
models (Walters, 2005; Yamazaki et al., 2008; Cui et 
al., 2012), two-layer models (Bai and Cheung, 2011, 
2012) and multi-layer models (Ai et al., 2011; Ai and 
Jin, 2012; Ma et al., 2012) have been developed.

In order to properly simulate discontinuous flows, 
such as hydraulic jump and wave breaking, the 
numerical models should conserve the momentum 
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(Stelling and Duinmeijer, 2003). In general, two strat-
egies have been used to achieve momentum con-
servation in the numerical formulation. In case that 
the non-conservative form of governing equations 
is under consideration, a momentum conservation 
scheme proposed by Stelling and Duinmeijer (2003) 
can be used to handle wave breaking (Yamazaki 
et al., 2008; Zijlema et al., 2011).  The other way is to 
solve the conservation form of governing equations 
directly, since the momentum conservation is au-
tomatically considered, this method has also been 
widely used for wave breaking simulation (Zijlema 
and Stelling, 2008; Ai and Jin, 2012; Ma et al., 2012).

After a wave breaks, a portion of the remaining 
energy will energize a bore that will run up the face 
of a beach or sloped shore structure (Sorensen, 
2006). In the numerical model, use of a moving 
boundary condition is required for the calculation 
of wave run-up and run-down. The detailed reviews 
on wetting and drying algorithms for coastal waves 
run-up modeling can be found at Zijlema and Stell-
ing (2008).

In this paper, a one-dimensional depth-integrated 
non-hydrostatic wave model for wave propagation, 
breaking and run-up is developed.  Non-hydrostatic 
approach is introduced into an existing shallow 
water model (Stelling and Duinmeijer, 2003), which 
solves the non-conservation form of shallow water 
equations with a momentum conservation scheme 
for handling hydraulic jumps and uses a simple wet-
ting and drying algorithm for simulating the moving 
boundary. The newly developed non-hydrostatic 
model is able to simulate wave propagation, break-
ing and run-up.  The paper is organized as follows. 
The governing equations and associated boundary 
conditions are introduced in Section 2. Section 3 
describes the numerical solution. Section 4 presents 
an analytical solution and several benchmark cases 
for model verification and validation. Finally, con-
clusions are drawn in Section 5.

MAtheMAtIcAl ForMulAtIon
Governing equations
The three-dimensional Reynolds-averaged Navier-

Stokes equations are given by

where u, v, w are flow velocities in x, y, z directions, 
respectively; t is time, ρ is water density; p is the 
pressure; g is the gravitational acceleration, txx, txy, 
..., and tzz are the stresses (including both molecular 
and turbulent effects).

Following Casulli and Stelling (1998) and Stelling and 
Zijlema (2003), the total pressure is split into hydro-
static and non-hydrostatic parts as

where  η (x, y, t) is the free surface elevation, ζ(x,y)  
is the bed elevation, and the total water depth is 
H = (η(x,y,t)-ζ(x,y). The vertical datum is arbitrary, 
but it is usually set equal to the still water level (sea 
level) for coastal and oceanographic researches as 
shown in Figure 1.
 
The free surface and bottom kinematic boundary 
conditions are

Depth integration of Equations (1)-(4) from  to   by 
taking into account the pressure in Equation (5) 
and the boundary conditions of Equations (7) and 
(8), ignoring the viscosity term, and following the 
non-hydrostatic pressure term treatments of Stelling 
and Zijlema (2003) and Walters (2005). The govern-
ing equations in Cartesian coordinate system are 
derived as

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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where U, W are depth-integrated velocities in hori-
zontal and vertical directions, respectively; q is the 
non-hydrostatic pressure at the bottom and n is the 
Manning coefficient. As the distribution of vertical 
velocity is unknown, it is approximated by W = (wζ + 
wη ) / 2 . Due to introduction of the non-hydrostatic 
pressure and incompressibility (Casulli and Stelling, 
1998; Stelling and Zijlema, 2003), the above equa-
tions are solved together with the two-dimensional 
vertical form of continuity equation (1):

Boundary conditions
To obtain a unique solution, boundary conditions 
are required at all the boundaries of the physical 
domain considered. At the free surface, since the 
current model doesn’t consider the wind stress and 
surface tension, the atmospheric pressure boundary 
condition is used.

At the bottom, Manning equation is used to ap-
proximate the bed friction, and the vertical veloc-
ity at the bed surface is prescribed by the bottom 
kinematic boundary condition (7).

At the inlet, an incident normal velocity  is given 
based on the linear wave theory as

where ω = 2π/L  is the angular frequency of wave 
with T the wave period; κ = 2π/L is the wave num-
ber with L the wave length; η1 is the incident wave 
surface elevation, for a regular wave, it is usually 
specified as a sinusoidal or monochromatic wave; 
f1 is a ramp function used to prevent initially short 
waves with relatively large amplitudes (Stelling and 
Zijlema, 2003) and it is defined as

The non-hydrostatic pressure is implicitly assumed as 
zero at inlet.

At the outlet and both ends of solitary wave cases, 
the flow is assumed hydrostatic. To allow the waves 
to cross the outflow boundary without reflections, 

Sommerfeld’s radiation boundary condition is ap-
plied: 

where f can be water surface elevation and veloc-
ity, c is the phase velocity defined as c = √gH .

Numerical Formulation
In this research, the governing equations are 
discretized based on a one-dimensional grid {xi-

1/2|xi+1/2=iΔx, i=0, ..., M}  with M the number of grid 
cells and Δx  the length of the grid cell. The location 
of the cell center is given by xi = (xi-1/2 + xi+1/2) / 2.  A 
staggered grid convention is used in which velocity 
U  is located at xi+1/2 on the other hand, free surface 
elevation η  and the other variables ζ, wη, wζ and H 
are located at xi. 

The governing equations are solved semi-implicitly 
with several steps. In the first step, the momentum 
equation without non-hydrostatic pressure terms is 
explicitly solved for the provisional velocity; in the 
second step, a tri-diagonal equation for non-hydro-
static pressure is constructed using the continuity 
equation (11) and implicitly solved, and then the 
provisional velocity is updated; finally, the water 
depth is updated by solving the depth-integrated 
continuity equation to ensure global mass conser-
vation.

First step
In this step, the provisional velocity  is calculated by 
the momentum equation (9) without the non-hydro-
static pressure terms as

and it is discretized as

where Un
i+1/2 is the horizontal velocity at previous 

time level, Hn
i+1/2, the water depth at a velocity 

point, is averaged from the neighboring water 
depths at surface points. ADV is the discretization 
of the advective term, and it is approximated by a 
momentum conservation scheme proposed by Stel-

(11)

(12)

(13)

(14)

(15)

(16)
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ling and Duinmeijer (2003) as 

with  
 

The water depth at a velocity point   is simply 
calculated by a first-order upwind scheme as fol-
lows:

Second step 
In the second step, to achieve a divergence-free 
velocity field, a tri-diagonal equation is formulated 
using continuity equation, the momentum equation 
and bottom kinematic boundary condition and it 
is implicitly solved for non-hydrostatic pressure. And 
then the provisional velocity field is corrected by 
non-hydrostatic pressure.

The vertical velocity at the bottom is calculated by 
Equation (6) as

where the horizontal velocity at surface points, 
is calculated by  

The vertical velocity at the free surface is calcu-
lated by vertical momentum equation (10) with the 
approximation W = (wζ + wη) / 2  and therefore,

Comparing Equation (15) with Equation (9), it is seen 
that the final horizontal velocity influenced by the 
non-hydrostatic pressure can be written as

The non-hydrostatic pressure is calculated using the 
discretized continuity equation (11) as follows

Substituting Equations (19), (20) and (21) into Equa-
tion (22), a tri-diagonal equation for non-hydrostatic 
pressure is obtained:

where

Equation (23) can be efficiently solved by a tri-diag-
onal solver (e.g. TDMA). Once the non-hydrostatic 
pressure is obtained, the horizontal velocity is cor-
rected by Equation (21), and the vertical velocity at 
the free surface is updated by Equation (20).  

Third step
In the last step, the depth-integrated continuity 
equation (8) is solved for the water depth using the 
corrected horizontal velocity as 

In case that the bed is fixed, Equation (24) can be 
rewritten as

In Stelling and Duinmeijer (2003), a simple and ef-
ficient wetting and drying algorithm was proposed 
to obtain the non-negative depth with a semi-im-
plicit formulation, and their algorithm is adopted for 
explicit time integration in this study. It is assumed 
that the velocity is positive, with the water depth at 
a velocity point   defined in Equation (17), 
Equation (25) is rearranged to be

and therefore, the total water depth is ensured to 
be positive if . Similar requirement can be derived 
for a negative flow velocity.

Model VerIFIcAtIon And VAlIdAtIon
In this section, the developed one-dimensional 
dynamic wave model is verified by an analytical 
solution and validated by three benchmark cases 
for nearshore phenomena simulation.

(17)
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(20)
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(24)

(25)

(26)
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Solitary wave propagation along a constant water 
depth channel
The solitary wave is a nonlinear wave with finite 
amplitude, which is not a solution of the hydrostatic 
shallow water equations, and therefore it is first used 
to verify the correctness of the non-hydrostatic 
model. If the fluid is inviscid and the horizontal 
bottom is frictionless, the wave should maintain 
the shape and velocity during the propagation 
process. This case has been used in several non-
hydrostatic model verifications (Stelling and Zijlema, 
2003; Zijlema and Stelling, 2005; Walters, 2005; and 
Yamazaki et al., 2008).  In this numerical test, a 1000 
m long and 10 m deep frictionless channel with ra-
diation boundary condition imposed at both ends 
is considered. The initial solitary wave is located 
at   x0=100 m and its initial height is A=2m. The mesh 
size is  Δx=0.5 m, the time step is Δt=0.025 s, and the 
Courant number in terms of wave celerity is Cr = 

Figure 2 shows the initial solitary wave and simu-
lated wave along the channel at 20, 40 and 60 s. 
There is a slight reduction of wave height at the 
beginning of simulation due to the initial condition 
approximated by the analytical solution, similar 
observations were reported by Walters (2005) and 
Yamazaki et al. (2008). It can be seen that the 
shape and amplitude are conserved well during 
the simulation, this is attributed to the non-hydro-
static pressure terms in the formulation.
 
Regular waves propagation over a submerged bar
The second numerical test investigates the wave 
model’s capability to handle nonlinear dispersive 
waves propagation. Beji and Battjes (1993) and 
Luth et al. (1994) conducted physical experiments 
of regular waves propagation over a submerged 
trapezoidal bar in a 37.7 m long, 0.8 m wide and 
0.75 m high wave flume. Figure 3 shows the numeri-
cal setup of the experiment, the still water depth 
is 0.4 m, a 0.3 m bar with offshore slope 1:20 and 
shoreward slope 1:10 is set between 6.0 m and 17.0 
m in the flume. The incident sinusoidal waves with 
amplitude 1.0 cm and wave period 2.02 s, corre-
sponding to the wave depth parameter kH≈0.67, 

are generated at left side. The wave absorber of 
the experiment, a 1:25 plane beach with coarse 
material at the right side, is modeled by an open 
flow area with the radiation boundary condition 
imposed (Stelling and Zijlema, 2003; Yamazaki et al., 
2008). Surface elevations were measured with wave 
gauges at several locations. In the simulation, the 
35 m long computational domain is discretized with 
Δx = 1.25 cm, and time step Δt = 0.0025 s.

Comparison of simulated and measured free sur-
face elevations is shown in Figure 4. It is seen that 
the wave shoaling process on the offshore side of 
bar (Gauges 4 and 5) and wave transformation 
from a low frequency dispersion zone (Gauge 6) 
to a high frequency dispersion zone (Gauge 8) 
are well predicted by this depth-integrated non-
hydrostatic model. However, obvious discrepancies 
appear between simulated and measured water 
surface elevations over the flat bottom behind the 
bar, in this area, the highly dispersive waves with 
water depth parameters range from 6 to 10 in this 
zone (Roeber et al., 2010), are out of the applicable 
range of depth-integrated model. However, these 
high dispersive waves have been simulated very 
well by a multi-layer non-hydrostatic model (Stelling 
and Zijlema, 2003). 

Solitary wave run-up along a plane beach
The third numerical test examines the model’s 
capability to handle wave breaking and wave run-
up. Titov and Synolakis (1995) presented a solitary 
wave with wave height A/h = 0.3 (h is the still water 
depth) ran up a beach with slope 1:19.85. In the 
numerical model setup, the grid size is Δx/h=0.125, 
Manning coefficient n = 0.01 is used to define the 
surface roughness, and the initial solitary wave is 
at 20h from the beach toe. Figure 5 compares the 
simulated surface profiles with the measurement. 
As the wave propagates over the sloped beach, 
the wave front starts to skew, and eventually the 
wave breaks between t√g/h=20 and t√g/h=25, the 
numerical model successfully simulates the wave 
breaking process without any stability issues. And 
then the breaking water surges over the beach and 
a hydraulic jump forms around t√g/h=50. Overall, 
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the numerical model reasonably predicts the wave 
run-up, a minor discrepancy is observed for the 
location of the return flow around t√g/h=55  this was 
also reported in other numerical test (Yamazaki et 
al., 2008; Roeber et al., 2010).

Solitary wave propagation over a fringing reef
The last case is a solitary wave transformation over 
an idealized fringing reef, validating the model’s 
capability in handling nonlinear dispersive waves 
and wave bore propagation. Two series of labora-
tory experiments on solitary waves transformation 
over idealized fringing reefs at the O.H. Hinsdale 
Wave Research Laboratory of Oregon State Uni-
versity were reported by Roeber et al. (2010). In this 
study, the considered test involves a solitary wave 
of wave height A = 0.5 m in a 48.8 m flume and a 
still water depth of h = 1.0 m, a 1:5 fore reef and 
a dry reef flat, a Manning coefficient n = 0.012 is 
used to approximate the surface roughness. In the 
experiment, the wave starts to skew to the front as it 
propagates across the toe of the slope at x = 17 m, 
and gradually the wave surges over the flat reef un-
dergoing a transition from subcritical flow to super-
critical flow around  t√g/h=56 after the wave surges 
onto the dry reef, it forms as sheet flow, meanwhile, 
the reef edge exposed because the rarefaction 
falls below the initial water level (Roeber et al., 
2010). Figure 6 shows the comparison between 
the measured and simulated wave profiles as the 
solitary wave propagates across the flume, it can 
be seen that the numerical model correctly predict 
the wave surge, flow transition process, sheet flow, 
wave front and even the offshore rarefaction.

conclusIons
In this paper, a one-dimensional non-hydrostatic 
wave model for wave propagation, breaking and 
run-up has been developed based on the work of 
Stelling and Duinmeijer (2003). The model solves the 
depth-integrated, non-conservation form of shallow 
water equations with extra non-hydrostatic pressure 
terms. As the existing formulation can properly simu-
late hydraulic jump with a conservation scheme 
and handle the moving boundary with a simple 
and efficient wetting and drying algorithm, the 

newly developed non-hydrostatic module enables 
the model for dynamic wave motion simulation. 
Analytical solution and experimental data have 
been used to verify and validate the model, the 
results show that the developed wave model is suit-
able for nearshore phenomena simulation, and it is 
able to handle nonlinear dispersive waves propa-
gation, wave shoaling, breaking and run-up to a 
certain degree.  
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Figure 1. computational domain with free surface and bed elevation.

Figure 2. solitary wave propagation along a channel at different time steps.
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Figure 3. numerical model setup of waves propagation over a submerged bar.

Figure 4. comparison of simulated and measured free surface elevations at several wave gauges. numerical 
results (solid lines), experimental data (circles).
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Figure 5. Surface profiles of a solitary wave run-up on a 1:19:85 plane beach. Numerical results (solid lines), 
experimental data (circles).
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Figure 6. Surface profiles of a solitary wave propagation over a fringing reef. Numerical results (solid lines), ex-
perimental data (circles).
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