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PARAMETER ESTI~lATION

It is thus seen that an accurate determiniation of the parameters
x and k is central to the usefulness of the Muskingum method.

The storage S in Eq. (2) is the absolute storage. In practice, it is
the relative storage that is normally available. Thus Eq. (2) can
be modified to incorporate the difference C between relative and
absolute storages:
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~ k[,I-+II-xIOJ+C

Thus the problem is reduced to estimating, k, x and C.

I.east S(IUarCS Method
This method is based on minimizing the sum of squares of

deviations between observed storage and computed storage fora
given inflow-outflow sequence. Mathematically,

Further,
C.. +C,+C·= I

and
:>, ~ 2kx

1= t" - I" I

where
C.. = (-kx + 0.5 :>I)/C,
C, = (kx + 0.5 :>')/C,
C = (k - kx - 0.5 :>,)/c.
C, = k - kx + 0.5 :>,

INTRODUCTION

Since its development around 1934 (Gilcrest, 1950; Chow,1959)
by McCarthy (1938) the Muskingum method has been one ofthe
most popular methods for routing flood waves in rivers and
channels. It is, therefore, not surprising that many investigators
have studied the method and the implications involved in its use
(Gilcrest, 1950; Nash and Farell. 1955; Linsley, Kohler and
Paulhus. 1958; Chow. 1959; Nash. 1959a; Carter and Godfrey.
1960; Kulandaiswamy, 1966; Overton. 1966; Diskin. 1967;
Venetis. 1969; Cunge. 1969; Gill. 1977. 1978. 1979a. 1979b;
Koussis, 1978; Ponce and Yevjevich, 19788, 1978b; Ponce, 1979;
Meehan, 1979; Stephensen, 1979). Most agree that the effec
tiveness of this method depends on the accuracy with which
parameters are estimated. Most frequently the parameters are
determined graphically (Linsley, Kohler and Paulhus, 1975;
Viessman, Knapp, Lewis and Harbaugh, 1977). Although the
graphical method is generally satisfactory, it certainly is not the
most convenient one. Furthermore, it entails a considerable
element of subjectivity, and is slow to work with. Therefore, a
more objective method of parameter estimation might be
preferable. This paper determines the Muskingum parameters
using (1) least squares method, (2) method of moments, (3)
method of cumulants, (4) graphical method and (5) direct
optimization. An example is worked out to evaluate the efficiency
of each method. It is shown that it is far more convenient to
estimate the parameters by either of the four other methods, and
that there may exist more than one set of parameters leading to
comparable resulls.

(H)

(9,,)B = YIZ2 ~ ZlY2

, Z2Yl - )'2ZJ

Thus we obtain:

,
I ~ ~IS'~II-SIiII'=>""" (7)

I I
where S (j) is the observed storage for the j-th time intervul, S {j)
the estimated storage for the j-th time interval and N the number
of data or times of observations. E is the error function to be
minimized. Equatioll (7) can be written as (dropping j for
brevity),,

~(~ -I..\I-I-(I-\)O-Cr >min
I-I

MUSKINGUM ~IETHODOF FLOOD ROUTING

The Musking-um method consists of a spatially lumped form of
a continuity equation and a linear storage-discharge
relationship for a specified river reach which can be written
respectively as:

[=O+~ (I)
dt

~ - ~l,1 + II-,)U] (2)
where I is the rate of inflow, 0 the rate of outflow, S the storage, t
the time, and k and x are the routing parameters. Physically
speaking, k is the average reach travel time and x the coefficient
used to weigh the relative effects of inflow and outflow on reach
storage. x can take values from 0 to .5.

The Muskingum method is a numerical solution ofEqs. (1) -(2)
at a time I and may be expressed as follows:

U = C.. I + C, I ,+ C· 0" , (30)
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Thus k, x and C can be determined objectively and conveniently.
The calculation involved in the method can be easily carried out
on a small desk calculator.

Method of Moments
This method is based on determining first the instantaneous

unit hydrograh (IUH) of the Muskingum reach and then
determining the moments of lUH.lfwe combine Eq. (1) with Eq.
(2) or Eq. (6), a linear ordinary differential equation is obtained:

where COV(S,Q) is covariance of Sand Q,II standard deviation
of So. 0,) standard deviation of Q. and Q = xl + (l·x)O. For
computation,

(21)

(22)

o~ at)

where K1(.) represents i-th cumulantofthe quantity (.). Thus an
objective determination ofk and x is possible using the method of
cumulants. It should be noted that in this particular case the
methods of cumulants and moments are equivalent.

Graphical Method
This method consists in choosing x such that the loop resulting

f~om the pIo.t of S versus xl + (l·x)O becomes as close to a straight
line as. possible. T?e slope of the straight line fitted through the
loop gives k. ObVlously, this method, 8S practiced results in a
trial and error procedure. '

However, it we closely follow the steps involved in the
graphical method and the result obtained therefrom it becomes
immediately clear that the least squares method is ~ numerical
eXP~8ionof the graphical method; hence, the two methods are
eqwvalent. Therefore, the least squares method should con
stitute a natural replacement for the graphical method.

In graphical method we try to choose x such that the
correlation coefficient r between S and xl +(l-x)O is maximum. It
is well known that

COY (S. Q)

(II)

(9b)

(9c)

(lOa)
(lOb)

kll-x) liO + 0 = I + kxE!
lit dt

yl y\
A = Yi - II",

e = (IS. - AIl - BIO)/N

where
y, = IS.I - (IS.IIJ/N
y, = II' - (II)'/N
YJ = IOI - IOII/N
z, = IS.o - (IS.IO)/N
z: ~ I/O - (H!:O)/N
z, = ~O: - (~O~O)/N
A ~ kx
B=k(l-x)

Therefore.

k=A+1I
x = A/(A + II)

where II '(hi is the first moment ofh(t) about the origin and U ,(h)
the second moment of h(t) about its centroid. These moments of
I UH can be determined from the moments of I and 0 using the
Nash Theorem of moment (Nash, 1959b). Thus we obtain:

It is easy to show that the IUH h(t) of Eq. (11) due to a unit
impulse 1'I(t) of inflow (Nash, 1959a; Kulandaiswamy, 1966;
Diskin, 1967; Venetis, 1969; Dooge, 1973) is

e-I/{k/l-xll x
hili ~ kll-\)' -1TXi6It) (12)

where S is mean of Sand Q mean of Q. Thus the problem of
determining k, x and C is one of maximizing r as a function of x.
This is the same that is done in the least squares method.

Uin..'Cl Optimization
This method determines directly the routing coefficients C .

C . and <: withoutestimatingkandx, based on minimizing the
difference between observed hydrograph and computed
hydrograph. The difference can beexpressed by an error function

. defined in a least squares sense or differently. In this study we
will employ the least squares error function.

There are, in fact, only two unknowns since the third is known
frum Eq. (4). If we choose C . and C to be unknowns then

(25)
(26)

(23)

(24)

, = (C, +0.5 C - O.5)/(C, + C:)
k =..It (C, + C)/ll - (',1

c = S - kQ

(15)
(16)

(13)

( 14)

U1(0) = U1(1) + U1(h)
U,(O) = U,(I) + U,(h)

Furthermore, if we take moments of Eq. (12) then

1)';lh) ~ k

1I·lh) = 11-2x)k

where K and K are the first and second cumulants of IUH in
Eq. (12). Using the theorem of cumulants equations analogous to
Eqs. (15) - (16) can be expressed for K and K as

(29)

(27)

Further,

The error functiun (dropping the subscript n for brevity) then
follows:

N
L - ~ (R" • R ) =""> mill

" I

Equation (27) can be used to construct the least squares error
function in a manner similar to that of Eq. (8). If we define

I( =1-0
1- = I - I
(j=I·()

then

I( = C,I- + C'(;"

( 19)

(20)

( 17)

(18)

K,IOI = K,(I) + K,lh)
K (0) = K + K:II) + K:lh)

where U(.) denotes the moment of (.), its subscript denotes the
order of U, its superscript denotes the moment about the origin
and no superscript denotes the moment about the centroid, U".
Thus k and x can be obtained objectively and conveniently by
computing the first two moments of inflow and outflow· one
about the oribrin and the other about the centroid.

Mclhod of Cuntulants
It is easy to show that

K = LJ':(11) = k
K = 1I·lh) = 11-2xlk
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where the sublicripts 0 and e denote observed and estimated R
respectively. Substituting Eq. (28) into Eq. (29), then differen
tiating Eq. (29) once with respect to C and once with rel:lpect to
C and equating each time to zero, we obtain:

140

o Lust Squares" Gr.aptllcal. C., 0; X a .Vl. k a .778

• ~nu • Cumulanu; x •• 446, k ••61

o Least Squares" Gr.apl'llcal. C "' 0; x ••25, k a .636

V (Jptl.futlon; x a .160. k "' .131
~R,,1- ~ C,~I-' + C,~FG

~R"G ~ C,~I-G + C,~G'

Sol ving Eqs, (30) - (31) for (' and C',

C, ~ (~R"HG' - ~R"G~FG)/DET
C, ~ (~R"I-~F' - ~R"HFG)/()ET

where

(30)
(31 )

(32)
(33) '20

• o o
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The least squares method is a numerical expression of the
graphical method. Therefore, there exists little reason to use the
I{raphil:al method as practiced currently. The amount of
computation involved in the method ofcumulants aod moments.
lealit liquares method ltnd the direct optimization issmall enough
to be t.'l.lsily managed by <.l small desk calculator.
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FiJ{U"(' I. Storage versus weighted flow for different
1lH'lhuds of I>urameter estimation for data of Linsley,
l\uhlt'l- and Paulhus (1975).

flood routinl,{ method·. Comparability oftheresults indicates that
there is nu particular reasun to use the trial and error graphical
method.

An example was worked out to estimate k and x by the above
five methods. The example data is from Linsley, Kohler and
Paulhus (1958). The parameters k and x were determined for this
data as shown in Table 1. It is clear that both least squares and
graphical methods yield the same parameter values. The
methods of moments and cumulants both yield the same
parameter values, but lead to a significantly different valueofx
when compared with the first two methods. The direct optimiza·
tion yield!:i even more different values of x and k.

Figure 1 plots observed storage versus xl +(l-x)O for each of the
four methods. It is evident that the three loops in the figure are
not as far apart as their corresponding values of k and x might
suggest. Indeed the loops corresponding to the graphical and
least squares methods with and without C are quite close to each
other.

A comparison of errors. defined as (observed flow-computed
flow); observed now, is given in Table 2. Observed and computed
outflows are compared for each method in Fig. 2. Although the
five methods yield satisfactory results, the graphical and least
squares methods are more accurate than the methods of
cumulants and moments. The direct optimization appears to be
the most uccurate of all. Two points appear to emerge from
analysis of the above data. Firlit, the five methods are com
parable in their results on the whole. Second. although k and x
aresignificantlydifferent for these methods, they lead to more or
less comparable results. This suggests that there might exist
more than one sei of the parameters k and x for the Muskingum

·1 ahh' I. k and x vulues for the example data of Linsley,
I\.ohlt·" and Paulhus (1958).

APPLICATION

Thus. once C and C are determined, k and x can be obtained
using Eqs. (25) - (26). The amount of calculation involved in
determining t . C and C is so small that it can be easily
performed on il small desk calculator.

""tho" , ,
I~)(tl.ys)

lII!n CoO

Gnphlu1 0.25 0.636

L!iUt Sq~arn 0.25 0.E36

Kamerh 0.446 O.EI

Cu..~hnts 0.445 0.6l

Opt illl14t Ion 0.16 0.731

lIl!n C~

Grapllical 0.212

I
0.18 -162391.8

Lu~t Squares 0.212 0.18 .162391.8

I
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'I'al.I., 2. ('omparison of methods of parameter estimation
rut· data or Linsley, Kohler and Paulhus (1958).

t I Observed Graphical + Least Graphical and Least Moments and Optimization
(days) (CMS) 0 Squares wi th C=O Squares with CtO Cumu1ants

(CMS)

Computed Error Computed Error Computed Error Computed Error
0 0 0 0

(CMS) (CMS) (CMS) (CMS)

0 1.13 1. 13 1.13 0.0 1.13 0.0 1. 13 0.0 1.13 0.0

0.5 0.99 1.10 1.14 -.02 1. 13 -0.02 1.14 -.031 loll -0.006

1 I 1.05 1.05 1.04 .010 1.05 0.002 1. 01 .035 1.05 -0.002

1.5 3.54 1.47 1.36 .079 1. 16 .209 .94 .359 1.43 0.027

2 9.63 3.68 3.61 .017 2.91 .21 2.91 .21 3.59 .025

2.5 16.28 8.13 8.58 -.056 7.33 .098 8.35 -.027 8.11 . .002

3 20.44 13.37 14.40 -.077 13.01 .027 14.92 -.116 13.48 -.008

3.5 20.95 17.67 18.62 . -.054 17.58 .005 19.59 -.109 17.58 .005

4 19.06 19.14 19.99 -.044 19.56 -.022 20.82 -.088 19.24 -.005

4.5 12.91 18.07 1'8.59 -.028 18.97 -.050 19.57 -.083 18.19 -.007

5 9.06 16.25 14.20 .126 15.08 .072 14.07 .134 14.54 .105

5.5 6.93 11.16 10.40 .068 11 .30 -.012 9.90 .113 11. 04 .010

6 5.44 8.69 7.83 .099 8.56 .016 7.44 .144 8.44 .029

6.5 4.08 6.65 6.02 .096 6.58 .011 5.79 .129 6.49 .024

7 3.34 5.1 4.59 .099 5.02 .016 4.37 .143 4.98 .022

7.5 2.69 4.02 3.65 .092 3.96 .015 3.52 .124 3.93 .022

8 2.26 3.23 2.93 .090 3.16 .020 2.83 .123 3.15 .025

8.5 1.9 2.63 2.43 .078 2.60 .014 2.37 .102 2.58 .02

9 1.58 2.18 2.02 .072 2.15 .012 1.98 .092 2.14 .02

9.5 1.42 1.81 1. 70 .061 1.80 .008 1.65 .088 1. 79 .011

10 1. 19 1.56 1.48 .052 1.55 .003 1.46 .062 1.54 .011



l"igurc 2. Flood routing by Muskingum method for
different methods of parameter estimation for data of
I.insll·Y. Kohler and Paulhus (1975).
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