Sampling Strategy and Selected Water-Quality and Bottom-Material Data for the Deer Creek, Mississippi, Synoptic Study

By Richard A. Rebich U.S. Geological Survey, Pearl, MS

INTRODUCTION

The Deer Creek Basin, in northwestern Mississippi, is located in the Mississippi River Alluvial Plain, an area locally referred to as the Mississippi Delta. Deer Creek begins at Lake Bolivar at Scott, north of Greenville, and empties into the Yazoo River north of Vicksburg (fig. 1). The channel meanders from north to south and is 164 miles long. The drainage area at the mouth is about 110 square miles. The basin drains a largely rural, agricultural landscape, but includes small communities such as Scott, Leland, Hollandale, Rolling Fork, Cary, and Valley Park. Flow in the upper part of the basin is semiregulated by several small weirs. Much of the Deer Creek channel below Greenville is "perched" or elevated formed by natural levees such that overland runoff drains away from the main channel, and only local runoff drains into the main channel. Flow is diverted into Rolling Fork Creek at Rolling Fork, which is located near the center of the basin. The Deer Creek channel below Rolling Fork is actually a series of small "lakes" or cutoffs created by earthen crossings underlain with culverts. Many of the culverts are partially filled with sediment or have inadequate cross-sectional area to convey flow from Rolling Fork to the mouth of the creek at the Yazoo River. Illegal trash dumping, failing septic systems, and agricultural runoff are well documented in the basin, especially in the lower part.

The U.S. Army Corps of Engineers, the U.S. Fish and Wildlife Service, the Mississippi Department of Environmental Quality (MDEQ), the Yazoo-Mississippi Delta Joint Water Management District, and the U.S. Geological Survey (USGS) have initiated a restoration effort for the Deer Creek Basin. Before restoration efforts began in the basin, the USGS conducted a synoptic study in September 2002 to collect baseline water-quality, bottommaterial, habitat-assessment, and macroinvertebrate data in Deer Creek. This report describes the sampling strategy for the Deer Creek synoptic study, including site selection, sampling methods, quality-assurance and quality-control methods, and listing of analytes and laboratories. This report also includes selected water-quality and bottommaterial data collected during the Deer Creek synoptic study.

Site Selection

Water-quality data were collected at 47 sites during the 2002 Deer Creek synoptic study (table 1, figure 1). Physical properties (turbidity, dissolved oxygen, pH, specific conductance, and temperature) were collected at all sites. Water-quality, bottom-material, habitat-assessment, and macroinvertebrate data were collected at 6 sites (shaded gray in table 1, numbered in figure 1). These six sites (hereafter referred to as primary sites) were selected at key locations in the Deer Creek Basin based on the following information:

- Deer Creek at Scott, MS (site 1, figure 1) This site is at the second channel crossing (local road) downstream from Lake Bolivar and was sampled to characterize the water quality of Deer Creek flowing out of the lake.
- Deer Creek East of Leland, MS (site 2, figure 1) This site is within the city limits of Leland, MS, where a USGS real-time flow and water-quality-monitoring gage is currently installed (U.S. Geological Survey, 2003a).
- Deer Creek near Hollandale, MS (site 3, figure 1) This site is at a former U.S. Army Corp of Engineers gaging station. Thus, historical stage, flow, and water quality data are available for the site (U.S. Army Corps of Engineers, 1995).
- Deer Creek at Rolling Fork, MS (site 4, figure 1) This site is slightly upstream of the diversion of Deer Creek into Rolling Fork Creek.
- Deer Creek at Cary and at Valley Park, MS (sites 5 and 6, figure 1) These sites were selected based on the availability of historical flow and water-quality data.

Sampling Methods

A multi-probe was used to measure physical properties such as turbidity, dissolved oxygen, pH, specific conductance, and water temperature. For sites with culverts or with minimal accessibility, physical properties were measured near the center of the channel. For sites with bridge crossings, the stream width was sub-divided into equal-width sections (at least 5 sections), and physical properties were measured near the water surface at each section. Where applicable, a bottom reading was also included for each equal-width section. Calibration of the multi-probe followed guidelines outlined in Wilde and Radtke (1998). The instruments were calibrated each morning and at the end of each sampling day. The final calibration for each constituent was required to meet measurement-performance criteria shown in Table 2.

At the six primary sites, water and bottom-material samples were collected from bridges, boats, or by wading using appropriate sampling equipment and established depth- and width-integrating techniques (Shelton, 1994). Sample collection, processing, and preservation followed protocols outlined in the National Field Manual for the Collection of Water-Quality Data (Wilde and Radtke, 1998). For each water sample, approximately 6 liters of water was collected and composited into a Teflon churn splitter. The composite sample was churned about 10 times before sub-sampling into analyses bottles, which were then packed in ice and shipped in coolers to laboratories for the various chemical analyses. For each bottom-material sample, approximately 500 milligrams (mg) of sample was collected and shipped to the laboratory for analysis.

Habitat assessment procedures were modified by MDEQ from an earlier assessment for streams in mountainous regions to fit the low-gradient glide/pool streams in the Mississippi Alluvial Plain (Barbour and Stribling, 1994; Florida Department of Environmental Protection, 1996). The biological field team selected a representative stream section and measured 100- to 500-meter (m) reaches depending on channel size at each site. The upstream (US) and downstream (DS) limits of the reach were marked with flagging labeled with the stream name, US or DS end, date, and samplers' initials. The actual assessment included visual inspection of 50 m on either side of the marked reach

with the biological team documenting general characteristics and scored assessments (Barbour and Stribling, 1994; Florida Department of Environmental Protection, 1996). Macroinvertebrate samples were collected according to two different methods – natural habitat (woody debris, cut-banks, and bottom material) and artificial habitat (Hester-Dendy artificial substrate). Macroinvertebrate samples were analyzed by Tetra Tech, Inc. Presentation of habitat assessment and macroinvertebrate data are beyond the scope of this report.

Quality-Assurance and Quality-Control Methods

The Mississippi USGS office participates in the National Field Quality Assurance Program (NFQA) once each year. The USGS Ocala Water Quality and Research Laboratory in Ocala, FL, prepares water samples with known values of pH, alkalinity, and specific conductance. Field personnel perform a blind analysis on the samples for comparison to known values (Crawford, 1999). All Mississippi field personnel participating in the Deer Creek study successfully completed the NFQA for 2002.

Prior to sample collection, all equipment that came into contact with the sample water and bottom material was cleaned with a 0.2 percent non-phosphate detergent, rinsed with deionized water, air dried, wrapped in aluminum foil, and stored in a dust-free environment. All equipment (churn splitter, tubing, and bottles) was placed in plastic bags to prevent contamination. Teflon bottles were covered with nitrile gloves to keep the sampling chamber free of foreign materials. At the end of each sampling day, the churn splitters and tubing were cleaned thoroughly by using the non-phosphate solution, followed by a series of washes alternating tap water and deionized water.

Quality-control samples were collected to assess bias and variability for the set of environmental samples. Field equipment blank samples were collected to assess bias in the data set that could be caused by contamination of field equipment. One set of equipment blanks were run for the Deer Creek synoptic study. Replicate samples were collected to assess variability in the environmental data set due to random errors. One duplicate water sample was collected at the Deer Creek at Scott, MS, site. Habitat assessment duplicates were run at the Deer Creek at Scott, MS, and at the Deer Creek at Valley Park, MS, sites.

Lists of Analytes and Laboratories

A complete list of all analytes that were performed on the water-quality and bottommaterial samples collected at the six primary sites is presented in Table 3. Four different USGS laboratories were used for the Deer Creek synoptic study (analytical methods and detection limits for each analyte are available online, and web pages for each laboratory are listed in the references section):

1. National Water Quality Laboratory in Denver, CO (U.S. Geological Survey, 2003b) – Water samples were analyzed for pesticides (herbicides, insecticides, and degradation products) dissolved organic carbon, and total particulate carbon.

Bottom-material samples were analyzed for historically-used organochlorine pesticides.

- 2. Ocala Water Quality and Research Laboratory in Ocala, FL (U.S. Geological Survey, 2003c) Water samples were analyzed for nutrients (dissolved and total), major ions, trace elements, and total organic carbon.
- 3. Louisiana District Sediment Laboratory in Baton Rouge, LA (U.S. Geological Survey, 2003d) Water samples were analyzed for suspended sediment.
- 4. Organic Geochemistry Research Laboratory in Lawrence, KS (U.S. Geological Survey 2003e) Water samples were analyzed for the herbicide glyphosate and two degradation products.

WATER QUALITY AND BOTTOM MATERIAL DATA

Physical properties for all sites are presented in Table 4, selected nutrient values collected at the six primary sites are presented in Table 5, and organochlorine values for bottommaterial samples collected at the six primary sites are presented in Table 6. The remaining water-quality data are available online within the USGS databases (U.S. Geological Survey, 2003f).

DISCLAIMER

The use of brand names in this paper is for identification purposes only and does not constitute endorsement by the U.S. Government.

REFERENCES

- Barbour, M.T., and Stribling, J.B., 1994, A technique for assessing stream habitat structure, *in* Riparian ecosystems in the humid U.S.: Functions, values and management, 1993, Proceedings: Washington D.C., National Association of Conservation Districts, p. 156-178.
- Crawford, Kent, 1999, Quality science, quality service: Accessed February 2003 at URL http://pa.water.usgs.gov/keystone_ws99/quality.html.
- Florida Department of Environmental Protection, 1996, Standard operating procedures for biological assessment, variously paginated.
- U.S. Army Corps of Engineers, 1995, Stages and discharges of the Mississippi River and tributaries in the Vicksburg District 1995: U.S. Army Engineer District, Vicksburg Corps of Engineers, 339 p.

- Shelton, L.R., 1994, Field guide for collecting and processing stream-water quality samples do the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 94-455, 42 p.
- U.S. Geological Survey, 2003a, USGS 0728875070 DEER CREEK EAST OF LELAND, MS, provisional data: USGS Mississippi District Local Real-Time Data, at URL http://ms.waterdata.usgs.gov/nwis/uv/?site_no=0728875070&PARAmeter_cd= 00065,00060.
- U.S. Geological Survey, 2003b, USGS National Water Quality Laboratory home page, at URL http://nwql.usgs.gov/Public/Public.html.
- U.S. Geological Survey, 2003c, USGS Ocala Water Quality and Research Laboratory web page, at URL http://owqrl.er.usgs.gov/.
- U.S. Geological Survey, 2003d, USGS Louisiana District Sediment Laboratory, at URL http://la.water.usgs.gov/.
- U.S. Geological Survey, 2003e, USGS Organic Geochemistry Research Laboratory at URL http://ks.water.usgs.gov//Kansas/reslab/.
- U.S. Geological Survey, 2003f, Water quality data for Mississippi: USGS National Water Information System Web (NWIS Web), at URL http://ms.waterdata.usgs.gov/nwis/qw.
- Wilde, F.D. and Radtke, D.B., 1998, National field manual for the collection of waterquality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9.

Table 1.—Map number, station number and name, locations, and constituents for sites sampled aspart of the Deer Creek, synoptic study, September 2002

[USGS, U.S. Geological Survey; SR1, State Road 1; SE, southeast; SW; southwest; NE, northeast; NR, near; NW, northwest; AB, above; all sites located in Mississippi; latitude and longitude values presented as XXXXXX are XX° XX' XX"]

						Water sample, bottom- material
Map number (fig. 1)	USGS station	Station name	Latitude	Lonaitude	Physical properties	sample, and habitat assessment
	333554091045000	DEER CREEK AT SR1 AT SCOTT	333554	910450	x	
1	7288730	DEER CREEK AT SCOTT	333546	910441	х	х
	333534091042000	DEER CREEK AT WEIR AT SCOTT	333534	910420	x	
	333447091023600	DEER CREEK SE OF SCOTT	333447	910236	x	
	333353091013600	DEER CREEK NORTH OF FORKLAND	333353	910136	x	
	333141091005500	DEER CREEK AT FORKLAND	333141	910055	x	
	333058090590400	DEER CREEK AT PRISCILLA,	333058	905904	x	
	333008090594500	DEER CREEK SW OF PRISCILLA	333008	905945	х	
	332733091001600	DEER CREEK AT METCALFE	332733	910016	х	
	332638090585900	DEER CREEK SE OF METCALFE	332638	905859	х	
	332541090552100	DEER CREEK NE OF STONEVILLE	332541	905521	x	
	332515090543400	DEER CREEK AT STONEVILLE	332515	905434	x	
	332440090543600	DEER CREEK SOUTH OF STONEVILLE	332440	905436	х	
2	728875070	DEER CREEK EAST OF LELAND	332404	905331	х	х
	332249090542600	DEER CREEK SOUTH OF LELAND	332249	905426	х	
	332008090533200	DEER CREEK NR BURDETTE	332008	905332	х	
	331611090523600	DEER CREEK AT ARCOLA	331611	905236	х	
	331304090521800	DEER CREEK AT ESTILL	331304	905218	х	
	331127090512600	DEER CREEK NORTH OF HOLLANDALE	331127	905126	х	
	7288768	DEER CREEK AT HOLLANDALE	331010	905102	х	
3	7288770	DEER CREEK NR HOLLANDALE	330859	905047	х	х
	330632090523900	DEER CREEK AT PERCY	330632	905239	х	
	330414090514400	DEER CREEK AT PANTHER BURN	330414	905144	х	
	330238090500200	DEER CREEK AT VICKLAND	330238	905002	х	
	330028090511000	DEER CREEK NR NITTA YUMA	330028	905110	х	
	325821090502300	DEER CREEK AT ANGUILLA	325821	905023	х	
	325754090511100	DEER CREEK NR ANGUIL	325754	905111	х	
	325554090525000	DEER CREEK NORTH OF ROLLING FORK	325554	905250	х	
4	325427090524500	DEER CREEK AT ROLLING FORK	325427	905245	х	x
	325251090531900	DEER CREEK SOUTH OF ROLLING FORK	325251	905319	х	
	325218090532500	DEER CREEK NORTH OF EGREMONT	325218	905325	x	
	325200090533700	DEER CREEK NR EGREMONT	325200	905337	х	
	325034090542100	DEER CREEK SOUTH OF EGREMONT	325034	905421	х	
	324951090544900	DEER CREEK NORTH OF CARY	324951	905449	х	
5	7288740	DEER CREEK AT CARY	324903	905517	х	x
	324728090570600	DEER CREEK SW OF CARY	324728	905706	х	
	324552090573000	DEER CREEK NW OF BLANTON	324552	905730	х	
	324509090554700	DEER CREEK AT BLANTON	324509	905547	х	
	324159090555000	DEER CREEK NR ONWARD	324159	905550	х	

Table 1.—Map number, station number and name, locations, and constituents for sites sampled aspart of the Deer Creek, synoptic study, September 2002

Map number (fig. 1)	USGS station	Station name	Latitude	Longitude	Physical properties	Water sample, bottom- material sample, and habitat assessment
	324202090562700	DEER CREEK SOUTH OF ONWARD	324202	905627	x	
	7288790	DEER CREEK NR VALLEY PARK	324016	905413	x	
	323915090513900	DEER CREEK NORTH OF VALLEY PARK	323915	905139	х	
	323821090513900	DEER CREEK AB VALLEY PARK	323821	905139	х	
6	323805090514700	DEER CREEK AT VALLEY PARK	323805	905147	х	х
	323437090502100	DEER CREEK NR HARDEE	323437	905021	х	
	323223090491400	DEER CREEK EAST OF FLOWEREE	323223	904914	х	
	323244090492300	DEER CREEK NR FLOWEREE	323244	904923	х	

Table 2. Day-end calibration measurement criteria

[GPS, global positioning system; m, meters; %, percent, mg/L, milligrams per liter; C, Celsius; μS/cm, microsiemens per centimeter; all criteria are dependent upon range of measurement for a specific multi-probe]

Measurement Property	Accuracy
GPS	± 15 m
Dissolved oxygen	The greater value of \pm 2% of reading or \pm 0.2 mg/L for 0-20 mg/L
pH	± 0.2 standard units
Temperature	$\pm 0.15^{\circ}$ C or $\pm 0.10^{\circ}$ C
Specific conductance	$\pm 0.5\% + 1 \ \mu$ S/cm or the greater value of $\pm 1\%$ of reading or $+ 1\mu$ S/cm
Turbidity	±2%

 Table 3.—Listing of all analytes determined at USGS laboratories for water-quality and bottom-material samples collected at six primary sites of the Deer Creek synoptic study, September 2002

[OWQRL, Ocala Water Quality and Research Laboratory; NTU, nephlometric turbidity units; µS/cm, microsiemens per centimeter; C, Celsius; mg/L, milligrams per liter; NWQL, National Water Quality Laboratory; mL, milliliters; µg/L, micrograms per liter; LDSL, Louisiana District Sediment Laboratory; OGRL, Organic Geochemistry Research Laboratory; µg/kg, micrograms per kilogram]

Additional Field or Laboratory Constituents (Water)

Color (platinum-cobalt) - OWQRL Turbidity (NTU) - OWQRL pH, laboratory, standard units- OWQRL Specific conductance, laboratory, μS/cm at 25° C - OWQRL Alkalinity, water, unfiltered, laboratory, mg/L as CaCO₃- OWQRL Carbon, organic, total, mg/L as C - OWQRL Carbon, organic, dissolved, mg/L as C - NWQL Carbon, inorganic + organic, particulate, total, mg/L as C - NWQL Biochemical oxygen demand, 5-day, mg/L, at 20° C – Mississippi District Chemical oxygen demand, high level, mg/L - OWQRL Fecal coliform, colonies per 100 mL – Mississippi District Chlorophyll-a, phytoplankton, μg/L - OWQRL Sediment, suspended, mg/L - LDSL Residue, total, non filterable, mg/L - OWQRL Solids, residue on evaporation at 180° C, dissolved, mg/L - OWQRL

Major Ions (Dissolved in Water, mg/L) - OWQRL

Calcium (as Ca) Magnesium (as Mg) Potassium (as K) Sodium (as Na)

Nutrients (Water, mg/L) - OWQRL, except where noted

Nitrogen, ammonia, dissolved (as N) Nitrogen, ammonia, total (as N) Nitrogen, ammonia plus organic, dissolved (as N) Nitrogen, ammonia plus organic, total (as N) Nitrogen, nitrite plus nitrate, dissolved (as N) Nitrogen, nitrite plus nitrate, total (as N) Nitrogen, nitrite, dissolved (as N)

Trace metals (Dissolved in Water, µg/L) - OWQRL

Aluminum (as Al) Antimony (as Sb) Arsenic (as As) Beryllium (as Be) Boron (as B) Cadmium (as Cd) Chromium (as Cr) Cobalt (as Co) Copper (as Cu) Iron (as Fe) Lead (as Pb) Manganese (as Mn) Mercury (as Hg) Molybdenum (as Mo) Fluoride (as F) Sulfate (as SO₄)

Chloride (as Cl)

Nitrogen, nitrite, total (as N) Nitrogen, particulate, water, filtered, suspended, (NWQL) Phosphorus, orthophosphate, dissolved (as P) Phosphorus, orthophosphate, total (as P) Phosphorus, dissolved (as P) Phosphorus, total (as P)

> Nickel (as Ni) Selenium (as Se) Silver (as Ag) Strontium (as Sr) Thallium (as Tl) Vanadium (as V) Zinc (as Zn)

Table 3.—Listing of all analytes determined at USGS laboratories for water-quality and bottom-material samples collected at six primary sites of the Deer Creek synoptic study, September 2002 ... continued

Pesticides and D	egradates	Dissolved in water.	ug/L) – NWOI	. except where noted
				,

2,4-d methyl ester	chlorothalonil	glyphosate (OGRL)	pebulate
2,4-d	chlorpyrifos	hdroxyatrazine	pendimethalin
2,4-db	clopyralid	imazaquin	permethrin, cis
2,6-diethylaniline	cyanazine	imazethapyr	phorate
3-hydroxy-carbofuran	cycloate	imidacloprid	picloram
3-ketocarbofuran	dacthal	lindane	prometon
acetochlor	DCPA	linuron	pronamide
acifluorfen	deethylatrazine	malathion	propachlor
alachlor	deethyldeisopropyl	MCPA	propanil
aldicarb sulfone	atrazine	MCPB	propargite
aldicarb sulfoxide	deisopropyl atrazine	metalaxyl	propham
amino methyl-	diazinon	methiocarb	propiconazole
phosphonic acid	dicamba	methomyl	propoxur
(OGRL)	dichlorprop	methyl azinphos	siduron
atrazine	dieldrin	methyl parathion	simazine
bendiocarb	dinoseb	metolachlor	sulfometruron methyl
benfluralin	diphenamid	metribuzinl	tebuthiuron
benomyl	disulfoton	metsulfuron-methyl	terbacil
bensulfuron-methyl	diuron	molinate	terbufos
bentazon	EPTC	napropamide	thiobencarb
bromacil	ethalfluralin	neburon	triallate
bromoxynil	ethopropl	nicosulfuron	tribenuron
butylate	fenuron	norflurazon	triclopyr
carbaryl	flumetsulam	oryzalin	trifluralin
carbofuran	fluometuron	oxamyl	urea, 3(4-
chloramben	fonofos	p,p' DDE	chlorophenyl)
chlorimuron	glufosinate (OGRL)	parathion	methyl
Organochlorines in Botto	om Material (µg/kg, dry weight) - NWQL	
Aldrin	Heptachlor	o,p'-DDT	
Chlordane, technical	Lindane	p,p'-DDI)
Dialdrin	Mathawahlar		

Chlordane, technicalLindanep,p'-DDDDieldrinMethoxychlorp,p'-DDEEndosulfane IMirexp,p'-DDTEndrino,p'-DDDGross PCB'sHeptachlor epoxideo,p'-DDEToxaphene

Table 4.—Measurements of physical properties for the Deer Creek synoptic study,September 2002

[mg/L, milligrams per liter; μS/cm, microsiemens per centimeter; C, Celsius; all sites located in Mississippi; SR1, State Road 1; SE, southeast; SW; southwest; NE, northeast; nr, near; NW, northwest; AB, above; values in bold are means (medians for pH) for field measurements collected with depth and width at sites with bridge crossings]

Station name	Turbidity, nephelo- metric turbidity units	Dissolved oxygen (mg/L)	pH, Standard units	Specific conductance (µS/cm at 25 degrees C)	Temperature, water (degrees C)
Deer Creek at SR1 at Scott	19	6.1	8.0	160	30.0
Deer Creek at Scott	17	4.4	7.2	167	29.5
Deer Creek at Weir at Scott	4.2	3.8	7.0	181	27.5
Deer Creek SE of Scott	N/A	4.4	7.2	290	29.5
Deer Creek North of Forkland	15	5.6	7.6	463	29.0
Deer Creek at Forkland	31	7.2	8.3	432	31.5
Deer Creek at Priscilla	92	10.4	8.5	389	32.0
Deer Creek SW of Priscilla	22	6.1	7.9	370	28.5
Deer Creek at Metcalfe	17	7.7	7.9	435	29.0
Deer Creek SE of Metcalfe	8.7	5.2	7.7	425	27.0
Deer Creek NE of Stoneville	25	6.3	7.8	425	28.0
Deer Creek at Stoneville	30	8.2	8.2	571	31.0
Deer Creek South of Stoneville	20	7.6	8.0	479	31.5
Deer Creek East of Leland	28	6.9	7.7	500	29.5
Deer Creek South of Leland	24	5.4	7.7	431	27.5
Deer Creek nr Burdette	16	5.2	7.8	454	28.5
Deer Creek at Arcola	18	4.8	7.5	328	29.0
Deer Creek at Estill	15	5.7	7.5	270	30.0
Deer Creek North of Hollandale	12	6.5	7.6	192	30.5
Deer Creek at Hollandale	20	7.4	7.5	190	31.0
Deer Creek nr Hollandale	31	4.9	7.2	163	28.0
Deer Creek at Percy	32	4.4	7.0	155	29.5
Deer Creek at Panther Burn	11	5	7.1	144	29.0
Deer Creek at Vickland	12	6.7	7.2	128	30.0
Deer Creek nr Nitta Yuma	18	8.1	7.8	211	31.0
Deer Creek at Anguilla	18	6.4	7.6	384	29.5
Deer Creek nr Anguilla	13	7	7.6	250	29.5
Deer Creek North of Rolling Fork	N/A	N/A	N/A	N/A	N/A
Deer Creek at Rolling Fork	92	5.3	7.3	235	26.0
Deer Creek South of Rolling Fork	N/A	N/A	N/A	N/A	N/A
Deer Creek North of Egremont	140	5.5	7.2	109	31.0
Deer Creek nr Egremont	N/A	1.9	6.6	106	32.0
Deer Creek South of Egremont	34	5.3	7.1	210	29.0

Station name	Turbidity, nephelo- metric turbidity units	Dissolved oxygen (mg/L)	pH, Standard units	Specific conductance (µS/cm at 25 degrees C)	Temperature, water (degrees C)
Deer Creek North of Cary	55	3.1	6.8	121	28.5
Deer Creek at Cary	50	7.9	7.0	176	28.0
Deer Creek SW of Cary	38	5.3	7.4	N/A	29.5
Deer Creek NW of Blanton	16	4	7.0	124	30.0
Deer Creek at Blanton	23	3.9	6.8	144	27.0
Deer Creek nr Onward	29	6.6	7.2	92	30.5
Deer Creek South of Onward	N/A	N/A	N/A	N/A	N/A
Deer Creek nr Valley Park	56	7.7	7.8	85	32.0
Deer Creek North of Valley Park	N/A	10.3	7.5	113	32.0
Deer Creek AB Valley Park	46	8.1	7.6	102	31.0
Deer Creek at Valley Park	16	1.4	6.5	102	26.5
Deer Creek nr Hardee	63	2.2	7.0	200	26.0
Deer Creek East of Floweree	N/A	N/A	N/A	N/A	N/A
Deer Creek nr Floweree	16	3.1	6.4	126	28.5

Table 4.—Measurements of physical properties for the Deer Creek synoptic study,September 2002

Table 5.—Selected nutrient values for the six primary sites of the Deer Creek synoptic study, September 2002

[N, nitrogen; P, phosphorus; all sites are in Mississippi; values are in milligrams per liter; <, less than]

Station Name	Dissolved ammonia (as N)	Total ammonia plus organic nitrogen (as N)	Dissolved nitrite plus nitrate (as N)	Dissolved ortho- phosphorus (as P)	Total phosphorus (as P)
Deer Creek at Scott	0.08	1.6	0.04	0.10	0.24
Deer Creek East Of Leland	0.02	0.9	< 0.02	0.07	0.12
Deer Creek Nr Hollandale	0.01	1.0	< 0.02	0.07	0.22
Deer Creek At Rolling Fork	0.02	1.3	< 0.02	0.24	0.42
Deer Creek At Cary	0.02	1.1	< 0.02	0.03	0.18
Deer Creek At Valley Park	0.01	3.9	< 0.02	< 0.01	0.34

Table 6.—Organochlorine data for bottom-material samples collected at the six primary sites of the Deer Creek synoptic study, September 2002

[All sites are in Mississippi; <, less than; values listed are in micrograms per kilogram dry weight; all values above detection limits are in bold; E, estimated*]

				Heptachlor	Technical	
Station Name	Lindane	Heptachlor	Aldrin	Epoxide	Chlordane	Endosulfan I
Deer Creek at Scott	< 0.2	< 0.2	< 0.30	<1.00	<3.0	< 0.2
Deer Creek East of Leland	< 0.2	< 0.2	< 0.2	< 0.2	<3.0	<0.2
Deer Creek at Holland	< 0.2	< 0.2	< 0.2	< 0.2	<3.0	< 0.2
Deer Creek at Rolling Fork	< 0.2	< 0.2	<0.55	< 0.2	<3.0	< 0.2
Deer Creek at Cary	< 0.2	< 0.2	< 0.2	< 0.2	<3.0	< 0.2
Deer Creek at Valley Park	< 0.4	< 0.4	<0.4	< 0.4	<6.0	<0.4
						p,p-
Station Name	Dieldrin	Endrin	p,p-DDE	p,p-DDD	p,p-DDT	Methoxychlor
Deer Creek at Scott	4.67	<5.30	209	137	<3.65	<2.5
Deer Creek East of Leland	< 0.2	6.09	617	260	28.2	<2.5
Deer Creek at Holland	< 0.2	6.68	567	70.8	E4.55	<2.5
Deer Creek at Rolling Fork	< 0.2	5.42	199	81.7	24.8	<2.5
Deer Creek at Cary	< 0.2	< 0.2	11.7	6.06	1.23	<2.5
Deer Creek at Valley Park	< 0.4	2.11	132	35.0	11.7	<5.0
			Gross			
Station Name	Mirex	Toxaphene	PCB's	o,p-DDE	o,p-DDD	o,p-DDT
Deer Creek at Scott	< 0.2	<50	E15.1	< 0.2	32.2	<4.55
Deer Creek East of Leland	< 0.2	<50	25.4	22.2	43.5	8.99
Deer Creek at Holland	< 0.2	<50	E22.2	13.7	14.0	5.98
Deer Creek at Rolling Fork	< 0.2	<50	E7.25	3.47	E9.95	6.24
Deer Creek at Cary	< 0.2	<50	<5.0	< 0.2	0.55	<0.5
Deer Creek at Valley Park	< 0.4	<100	<10.0	4.76	6.25	2.78

* Some of the results listed were reported with an "E," or estimated, qualifier. Typical reasons the E qualifier is used include matrix interference or breakdown, analyte confirmed but below reporting limit, or analyte confirmed above standards based on a dilution of the sample. All of the estimated data are considered valid.

