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INTRODUCTION

Hydrodynamic modeling is governed by non-linear fluid
dynamics equations which, in successfully describing
the fluid properties, cannot be solved in an analytical
manner. Therefore, various approximation techniques
such as finite difference, finite volume, and finite
element methods have been utilized to help in solving
these equations. These techniques require the
generation of a grid over the entire flow field. This is
often the most time-consuming portion of the whole
field solution exercise, especially if the field geometry
is complex as is the case with the coastal boundaries
of water bodies.1

Coastal seas and estuaries contain many varying
physical characteristics. Deep channels and deep
holes containing large physical gradients that are very
difficult to deal with accurately in a numerical solution
are frequently encountered. It is well known that the
accuracy of the numerical flow simulation is
proportional to the number of grid points in the flow
field grid. However, an increase in grid points in these
areas of high gradients can lead to a considerable
increase in computation time. Therefore, to increase
the accuracy of numerical schemes, it is advantageous
to increase the number of grid points in the high
gradient areas and decrease the number in very low
gradient areas. Thus comes the use of adaptive grids.
As the physics of the problem are determined with the
flow solver, the grid senses the high gradient area and
packs the grid in this area while removing points in the
areas of low gradients, keeping the number of grid
points constant across the entire field. This helps to
increase the accuracy and efficiency of the time
dependant numerical solution by following strong
gradients as they evolve.2

For the spatial integration of the governing equations,
either the finite difference, finite volume, or finite
element method is normally employed. All of these
approaches can be traced to the concept of weighted
residuals. Generally, finite differences are employed
for the time integration. With the finite difference
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method, either rectangular or boundary-fitted structured
grids are employed. Boundary-fitted grids can be
either generalized non-orthogonal curvilinear grids or
orthogonal grids. Within the literature, many types of
difference schemes can be found (e.g., flux vector
splitting, upwinding, centered differences, fractional
time stepping, etc.).

The finite element method is generally associated with
the Galerkin weighted residual method and is normally
applied on irregular unstructured grids. However, other
schemes such as the Petrov-Galerkin, Taylor, etc.,
have been developed. The governing equations can
be cast into different forms (e.g., the wave equation
approach) and various approaches can be taken to
solve the resulting linear algebra problem, (e.g.,
iterative versus direct solvers). The order of the
interpolating polynomial is a major factor in both
accuracy and computational expense considerations.

A mesh generated over a flow field will provide an
accurate numerical solution only if the mesh is
sufficiently dense to reduce the truncation error, but
creation of a mesh too dense proves the solution to be
impractical to solve. Accuracy also depends upon the
ability of the mesh to conform to the field boundary.
Of primary concern are finite difference (structured)
and finite-element (unstructured) grids.

The structured grid is formed by the intersection of
curvilinear coordinate surfaces creating quadrilateral
cells in 2D and hexahedral cells in 3D.' The finite
difference method is utilized to solve flow field
calculations on the structured grid. However, using
structured grids involves several disadvantages. Even
though the structured grids are easily generated on
simple geometries and are very well ordered, the
derivatives of the approximated solution incur
inaccuracies. The governing equations for fluid
dynamics are very complex for the structured grid
using finite-differences. Finally, there is no good way
to accurately represent complex boundaries as is the
case in coastal sea and estuary modeling.3



The inability of the structured grid to represent complex
boundaries gives rise to the use of the unstructured
grid. The unstructured grid, composed of a triangular
mesh in 20, conforms easily to extremely complex
boundaries. The unstructured grid is easily devised,
but it also has several disadvantages. The mesh is
poorly ordered. The points of the mesh cannot be
arranged in a regular array (I, i, k) assuming that
points (I, i, k) and (I, i+1, k) are neighbors. Therefore,
certain ordered aigorithms, such as the alternating
directionaily implicit scheme (ADI), cannot be used with
an unstructured grid. This poor ordering also requires
considerably more computer time and storage for
numericai solutions. The description of the
unstructured grid requires not only the list of the point
coordinates but also a connection list to define the
elements [4]. However, the ability of the unstructured
grid to confonm weil to complex boundaries seems to
outweigh the disadvantages. Mesh adaption is an
important procedure in numerical flow simulation. It
offers the prospect of accurate flow field simulations
without the use of excessively fine, computationaily
expensive, meshes. The implementation of adaptive
meshing requires two basic steps. First, is the
identification of an error or adaptivity criterion which
indicates where in the flow field the mesh is deficient
and requires some modification. Changes in the mesh
may be required where activity is high or where the
activity is sufficiently low so that fewer grid points are
required. Second, it is necessary to use the
mechanics of mesh generation to suitably modify the
mesh. Most adaption procedures are based upon the
equidistribution principle. Throughout the field, the
product of the adaptivity criterion and the local mesh
length scale should be constant. Hence, in regions of
high activity the local mesh length scale should be
smail, whilst in regions of low activity, the length scale
should be large. To achieve this equidistribution
principle a number of techniques are available. Local
mesh enrichment adds additional points where
required. Local point movement forces points to
migrate to regions of high activity while maintaining
some points in regions of low activity. Some points
are also maintained where the mesh regeneration is
occuring using infonmation from the adaptivity criterion.
An alternative procedure is to modify the inherent
interpolation within the flow algorithm.

STRUCTURED GRID ADAPTAnON

The development of the adaptive algorithm for the
structured flow simulation is accomplished as a two
step process. The first step is to define an adaptive
weighing mesh (distribution mesh3.4) on the basis of
the equidistribution law applied to the flow field
solution. The second step, and probably the most

30

crucial one, is to redistribute grid points in the
computational domain according to the aforementioned
weighing mesh.

In an adaptive grid, the physics of the problem must
ultimately direct distribution of the grid points so that a
functional relationship on these points can represent
the physical solution with sufficient accuracy. The
concept is to have the grid points move as the physical
solution develops, concentrating in regions of large
gradients in the solution as they emerge. The
mathematics controis the points by sensing the
gradients in the evolving physical solution, evaluating
the accuracy of the discrete representation of the
solution, communicating the needs of the physics to
the points, and finaily providing mutual communication
among the points as they respond to the physics.

The basic idea involved is that the weight function is
equaily distributed over the field. For example, in one
dimensional adaption,

"t-I

f W(x)dx = constant

"

or, in the discrete form,

I.XjWi = constant

where W(X) is weight function, and l.Xi is the grid
interval, i.e., l.Xi = xi+1 - Xi' With this condition, the grid
interval will, of course, be smail where the weight
function is large and vice versa. Thus if the weight
function is some measure of the error, or the solution
variation, the grid points wiil be closely spaced in
regions of large error, or solution variation, and widely
spaced where the solution is smooth.

Adaptive weighing (distribution mesh) provides the
information on the desired concentration of points to
the grid redistribution scheme. The evaluation of the
weighing mesh is accomplished utilizing the weight
function representin~ the solution variation and the
equidistribution law. The selection of the weight
function plays a key role in grid adaptation.6

The development of the redistribution methodology is
based on the optimal combination of both the algebraic
method and the elliptic partial differential equation
method.



UNSTRUCTURED GRID ADAPTATION

In the hydrodynamic modeling field, these high
gradients occur with velocity, salinity, and temperature
distributions in areas near deep channels, inlets, fresh
water Inflows, and lagoons, to name a few. To
accomplish the mesh adaptation, two basic steps are
followed. First, an adaption criterion needs to be met
which identifies where the flow field needs to be
adapted to reduce computational error. Secondly,
when this adaption criteria is met, the mesh must be
adapted using the same schemes used to
automatically create the initial grid. Two basic
adaptation procedures for the unstructured grid are
discussed. They are point enrichment and mesh
regeneration (remeshing).7

Extremely complex domains are difficult to discretize
into a computational mesh; however, the unstructured
grid provides a way to automatically discretize these
domains. It is the lack of any globai ordered pattern
that makes the unstructured grid well suited for the
complex geometries of estuaries and coastal seas.
Severai different unstructured grid generation
techniques have been presented.4 Two of these of
interest are the advancing front technique and
Delaunay technique.

The advancing front technique "marches" a front of
cells outward from the domain boundaries based upon
some predetermined background grid. The
background grid is user defined over the entire field
domain. An initial front is generated at the domain
boundary, and, after rigorous point interpolation, the
front advances away from the boundary creating the
optimum number of cells and nodes until the entire
domain is discretized. A more compiete explanation
of this technique can be found.4 Of particular interest
is the Delaunay triangulization technique and
implementations of this scheme.

RESULTS AND CONCLUSIONS

The test cases are Weeks Bay and Mobile Bay,
Alabama. Figure 1(a) and 1(b) show the structured
and unstructured grids of Mobile bay. The Figure
1(b), the unstructured grid for the Mobiie Bay, shows
the precise performance at boundary. Figure 2(a)
shows how the mesh/grid tends to be denser in the
general vicinity of the high velocity or salinity gradient
areas of the deep channel by structured adaptive grid
technique. Figure 2(b) demonstrates the effect of
point insertion on the computational grid of Weeks Bay
by unstructured adaptive grid technique. These
adaption indicators, as stated for remeshing, point
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enrichment, and weight function techniques, can be
any physical gradient such as velocity, salinity,
density, and temperature.

Because of the difficulty in the numerical simulation of
flow fields, the use of computational grids has been
developed. Structured grids have the advantage of a
well-ordered data set, boundary-fitted performance,
and multi-block and dynamic adaptation. However,
they are not well suited for the too complex domains
of estuaries, coastal seas, and other water bodies
such as Chesapeake Bay and Mississippi Delta.
Unstructured grids are well suited for use with these
complex domains and easily automatically produced
using the Delaunay technique of grid generation for
the discretization of complex domains. This quality is
very beneficial since the majority of the time spent on
a flow solution is involved with the grid generation on
the physical domain. However, the unordered data
set (unstructured grids) will cause tremendous
amounts of CPU usage including bookkeeping and
calculation.

Improving the accuracy and assisting the convergence
of the computational solution by grid adaptation is
easily achieved. Using the above mentioned
techniques, the mesh can be solution-adaptive to
easily and quickly conform to the temporally changing
physical gradients of the fluid flow solution. Because
of the relative ease of use on compiex physical
domains, unstructured grids with solution-adaptive grid
modification appear to be the most desirable
computational methods for use in the
hydrodynamic/water quality areas of fluid field
modeling in the future.
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Figure lea) The StructUred Grid for Mobile Bay, Alabama.
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Figure 1(b) The Unstructured Grid for Mobile Bay, Alabama.
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Figure 2(a) The Adaptive Structured Grid for Weeks Bay, Alabama.
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Figure 2(b) The Adaptive Unstructured Grid for Weeks Bay, Alabama.
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