LIDAR Data for Furrow Irrigation System Design in the Phaucet Program

What is Phaucet...

Uses Field and Technical Data to help design and evaluate irrigation systems

 Requires a input of several variables including well for rate crown elevations, row lengths and poly plot dimensions

Leads to more efficient irrigation by suggesting to irrigators what size holes to punch in their poly pipe

The Need for New Tools

is the main hurdle to overcome

Determinations are

LIDAR used in place of data gathered with

Comparison 1: Design Breakdown

Survey Based Design

Survey Data Design No. of holes Size

7/8 13/16

3/4

11/16

5/8

9/16 1/2

7/16

3/8

5/16

1/4

13/16

11/16

3/4

11/16

5/8

9/16

1/2

7/16

3/8

5/16

1/4

LIDAR Data Design No. of Holes Size

2

27 76

1

1

1 78

17

15

14

7

29 40

5 31

1

1

79

14

15

16

8

Maximum Head =1.74

Minimum Head = .6

Maximum Head Station = 25

Average Furrow Flow = 5.8 gpm

LIDAR Based Design

Distribution	Uniformity = 91
--------------	-----------------

Maximum Head = 2.05

Minimum Head = .62

Maximum Head Station = 19

Average Furrow Flow = 5.8 gpm

Design evaluation: Both designs call for similar hole sizes down the length of the pipe. Both keep head pressures within acceptable levels. Distribution uniformity for both designs is acceptable. Both are valid designs.

Comparison 2: Design Breakdown

Survey Based Design Distribution Uniformity = 90.6 Maximum Head =2.43 Minimum Head = 1.77

Survey Data Design	
No. of Holes	Size
5	5/8
51	9/16
106	5/8
9	9/16
15	1/2
13	7/16
12	3/8
9	5/16
8	1/4
3	3/16

LIDAR Data Design	
No. of Holes	Size
19	9/16
145	5/8
17	9/16
16	1/2
13	7/16
11	3/8
9	5/16
8	1/4
3	3/16

5/8 Total = 9/16 Total =	111 70
9/16 Total =	70
LIDAR Based Desig	zn

_	Distribution Unit	formity = 92.9
-	Maximum Head	= 2.35
	Minimum Head	= 1.68
	Maximum Head	Station = 51
	Average Furrow	Flow = 5.7 gpm
_	5/8 Total =	145
_	9/16 Total =	36

Design evaluation: Designs are similar and valid. Slight variations in elevations led to a slightly different arrangement of hole sizes. Note both designs recognize station 51 as the Maximum Head Station.

Comparison 5	Design Breakdown
comparison 5.	Design breakdown

Survey Data Design		Survey Based Desig	
No. of Holes	Size	Distribution Uniformit	
32	5/8	Maximum Head = 2.57	
41	11/16	1247 at 1882 at 545	
155	3/4	Minimum Head = .90	
29	11/16	Maximum Head Static	
6	3/4		

13/16

LIDAR Data

Design

Size

5/8

11/16

3/4

13/16

3/4

13/16

3/4

13/16

No. of Holes

14

56

44

49

61

6

33

1

1

istribution	Uniformity = 94.5	

Maximum Head Station = 95

Average Furrow Flow = 7.8 gpm

Total 5/8 = 32 Total 11/16= 70 Total 3/4= 161

LIDAR Based Design

Distribution Uniformity = 93.9 Maximum Head = 3.06 Minimum Head = .73

Maximum Head Station = 0

Average Furrow Flow = 7.8 gpm

Total 5/8 = 14 Total 11/16 = 56 Total 3/4 = 138 total 13/16= 56

Design Evaluations: Similar designs. LIDAR based design shows as higher risk of pipe rupture; its highest head pressure is just over the highest acceptable level of 3.0.

